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I n t r o d u c t i o n .  Expansion of a supersonic gas-dynamic jet into vacuum is of interest for studying 
relaxation of translational and rotational energy under conditions of transition from continual flow to almost 
free molecular flow. Translational relaxation in such jets has been adequately studied [1-4] (which, in the case 
of monatomic gases and their mixtures, has made it possible to obtain information on the elastic intermolecular 
interaction potential in the range of low energies from the experimental dependences of jet parameters on 
source conditions), whereas the papers devoted to the theoretical investigation of rotational relaxation in a 
jet are few in number [5-8]. Thus, for example, Lang [7] and R~ndenija and Smith [8] studied the evolution 
of parallel, perpendicular, and rotational temperatures in a jet by solving numerically the system of moment 
equations obtained using the Van Chang-Uhlenbeck kinetic equation. Willis and Hamel [5] examined a similar 
problem using a model representation of the integral of collisions and asymptotic analysis of momentum 
equations. 

The goal of the present work is to perform a step-by-step asymptotic analysis of the system of 
momentum equations that follows from the Van Chang-Uhlenbeck kinetic equation for a polyatomic gas 
in the approximation of a weak nonequilibrium jet. This makes it possible to obtain analytic dependences of 
the limiting parallel TI[, perpendicular T• and rotational Tr temperatures on source conditions and on the 
rotational number of collisions Z, which characterizes the inelastic collision of molecules. Comparison between 
calculated and experimental results allows one to determine values of Z at low temperatures for particular 
polyatomic gases. 

1. System of momentum equations. The system of momentum equations for a polyatomic gas can be 
obtained from the Van Chang-Uhlenbeck kinetic equation by the known procedure [9]. In the case of gas 
expansion from a spherical source, it includes the equations of conservation of mass, momentum, and total 
energy, and also equations for Tl] , T_l. and the average rotational energy Er: 

d ( n k r , )  2 n k  
(nur 2) = 0, + k - W - / +  g (TH - T• = 0, 

d ( 2  ET) 0, (1.1) n u -~r + ~ + k T .t. + = 

2 du 3 k dTii 2 kT•  dEr 
nu = RII , =  =T+7=Umdr r m -u-g# Rr. 

The equation for T.t. does not enter the complete system of equations, because it is not independent (summing 
it up with the equations for TII and Er leads to the equation of conservation of total energy). 

System (1.1) can be obtained using an ellipsoidal representation for the distribution function of 
translational degrees of freedom (see, for example, [1]) and the Boltzmann distribution of rotational degrees 
of freedom: 

A = - ~ k 2 7 r k T E I ]  ~ exp - 2 k T i l ( r  2kT•  - e i  �9 
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Here Q = ~.exp (-r ei = Ei/kTr (Ei is the energy of the ith rotational level). In this case, 
t 

Er = kT,.(r dE~ = cr dT~, (1.3) 

where (r = Q-1 ~. r exp (-ei ) ;  cr(Tr) is the heat capacity of the rotational degrees of freedom. 
I 

The momenta of the integral of collisions RII and P~ using (1.2) were calculated by Randenija and 
Smith [8]. They are complex functions of TII, T• and Tr. Because of this, system (1.1) can be solved only 
numerically under certain restrictions. To perform a step-by-step asymptotic analysis of system (1.1), which 
makes it possible to obtain analytical results, we use the approximation of a weak nonequilibrium jet: 

/It-T T• -T T~ -T 
~ < < 1 ,  ~ < < 1 ,  ~ < < 1 .  (1.4) 

Here the temperature T corresponds to the equilibrium energy of the jet, and is given by the relation 

�89 + kr.  + + E (T) (1.5) 

Note that, with satisfaction of conditions (1.4), we have Er(Tr) - Er(T) --- cr(Tr - T). Calculation of Rii and 
Rr using (1.2) and taking into account (1.4) and (1.5) gives 

v 3 VEL 
~ 1 ] 

P~ = - n - -  (T, - Tj.) - 5 ( ~ 1 -  T.k) . 
rE 

In this case, 7 -1 and v~ 1 are the characteristic frequencies of elastic and inelastic collisions of molecules, given 
by the relations [9] 

8 4 (1 -  cos2x))o, 
Cr 

((F)c = 21r( k--~-T ~'/2O-2 ~_ ̀ / FTa exp ( - 7 2 -  e i -  ei)q~'(g,x)sin X dx dr).  
\ 7 r m  / i j k l  

Furthermore, e0 = ((Ae) 2 sin 2 X)e/((Ae)2),. Here 7 = (m/4kT)U2g; g is the relative particle velocity in 
collisions, and X is the scattering angle. 

In what follows, instead of the equations for TII , T.k, and Er, it is convenient to use the equations for 7~1 , 
Ta_, and T. Taking into account (1.4), from condition (1.5) we obtain c,.( T,.- T) '~ -(1/2)k(TII-T)-k(T.t_-T).  
Using this relation to eliminate Tr in the system of momentum equations and in the formulas for RII and RT 
and taking into account that RII + R_t. + R~ = 0, we obtain the resulting system of momentum equations 

(nut 2) = O, nU~r r + ~rr + -r (TII - T.t_) = 0, ucy-~r + kTil-~r + - - r  = O, 

i dTIi du k 
[ u k - ~ -  r + kTil-~r = - _  [C(Z)(TII - T) - A(Z)(T• - T)I, (1.6) 

dT• 2ukT• k 
uk--~-r + -r = [A(Z)(T u - T) - B(Z)(T• - T)I. 

Here the rotational number of collisions Z = (4/Tr)TE/T, 
8 A(Z) = 1 ( 1 -  ~[~ + ~-(1+ 

B(Z) = ~{1 + ~[5(1 + k )  - k (1 + r 1 7 6  ' 

s 

and, in addition, cv(T) = (3/2)k + cr(T). 

(1.7) 
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For the subsequent asymptotic analysis of the system of momentum equations (1.6), it is necessary to 
specify the dependences of tb- functions rt, Z, Cr and r on T. The value of rE is essentially determined by 
the anisotropic (inelastic) part of the interaction potential, while rt = q/p (q is the shear viscosity of the gas 
[9]) is found from the assumption of purely elastic scattering [10]. In specific calculations of jet relaxation, 
the values of rt and ~0 are usually determined using the part of the Lennard-Jones potential that corresponds 
to the attraction branch [V(r) = -C6/r6]. This gives an adequate description of the elastic scattering of 
molecules at low energies, which correspond to the conditions of jet expansion [11]. Then, for the frequency 
of elastic scattering and r we have 

, _ 1  __ \~-~] (1.8) 

[8] and e0 = 0.581 [6]. In addi t ion,  we assume that co(T) = (1/2)jk,  where j is the number of rotational 
degrees of freedom. This is valid for not too low temperatures. We also assume that Z =cons t .  The latter 
assumption was discussed in [8]. Note that the last two assumptions are not obligatory for asymptotic analysis. 
It is also possible ~o use more complex dependences of cr and Z on T, for example, exponential dependences. 

Under these assumptions, the system of momentum equations takes the form 

(5 + d 

3 + j dT du 2uT• 

1 dTII du 
~ u - ~ -  r + Til-~r = -AsnT1/6[C(Z)(TII - T) - A(Z)(T•  - T)], 

dT• 2uT• 
u-.-~- r + ~ = AsnT1/6[A(Z)(TII - T) - B(Z) (T•  - T)], (1.9) 

A(Z)  = 3 1 1 -  0.402(j + 3.163)Z-'1, B ( Z )  = 311 + 0.870(j + 2.925)Z-'1, 

C(Z)  = 311 + 0.234(j + 2.720)Z-1], 

where Ms is the Mach number for the source (r = rs) As = 4/(hv/-~)KnslF(ll/3); Kn~ -1 = 
3.770 nsrs(C6/kTs) 1/3. 

The dimensionless system of momentum equations (1.9) is obtained from (1.6) by introduction of the 
following scales for variables: ns for density, Ts for temperature, (kTs/m) 1/2 for velocity, and rs for distance 
(the subscript s corresponds to the source conditions). The parameter Kns (the Knudsen number for the 
source) is usually small in jet experiments. 

2. Solut ion for the  In t e rna l  Region.  Using the smallness of the Knudsen number for the source 
(Kns << 1), we shall seek a solution for system (1.9) for the jet parameters near the nozzle in the form 

r ( r ,  A,)  = r0 ( r )  + A -'rl(r) + . . . .  (2.1) 

As a zero approximation, we have 

(5 + j '~ 1/2 
nouo r2 = \'~--~-~ ] Ms, 

5 + j  M2 u~+(3+j)(5+J'~('+')/(3+1)M2s/(3+J)u~ ( \3+j] s +3+J)' (2.2) 

To = n~/(3+j), T,0 = Tii0 = T• = To, 

i.e., the usual continual solution for the spherically symmetrical expansion of monatomic gas. 

713 



As r ~ r from (2.2) it follows that 

n o ~ M s ( M  2 + 3 + j ) - 1 / 2 r - 2 + . . . ,  u o ~ _ ( ~ ) U 2 ( M ~ + 3 + j ) l / 2 + . . . ,  
(2.3) 

To ~'- ---stvi2/(3+J)ll~/I2k-'-s + 3 + j)-l/(3+J)r-4/(3+J) + . . . .  

Next, using (2.3) in one of the last two equattons of system (1.9) and comparing terms of the zero and first 
approximations, we can show that the uniform applicability of expansion (2.1) is violated at distances 

r = O(A3(3+J)/(3j+ll)). (2.4) 

This determines the external boundary of the internal flow region. In going over to the solution of the system 
of momentum equations in the external region, we should rescale the equations. 

3. S o l u t i o n  for  t h e  E x t e r n a l  Reg ion .  In rescaling the equations, we use the fact that  the dimension 
of the internal region is determined by condition (2.4) and the behavior of the parameters at the boundary 
(2.3). We introduce new variables: 

r = ~lrt s -  aa(a+j)/(ay+ll), n = N A s  6(3+y)/(aj+ll), T = r A s  r2/(aj+lO, u = U. (3.1) 

Then, the system of momentum equations in the 
d 

dsl 

external region takes the form 

( g V s  2) = 0; 

2N r• 0; N U  dU A'~12/(3J+")[d~l(Nrll ) + -~'-1 ('rll 
-d-~sl H- - = 

3 + j U dr dU 2Urj_ 

~ U ~ . s  1 1  drtl + d ,dV = _[C(Z)(rll  _ r)  - A(Z)(rj_ - r)]Nrl/6; 

udrJ-dsx + 2UrJ.s_~ = [A(Z)(rll - r )  - B(Z)( r j .  - r )]Nr  1/~. 

(3.2) 

(3.3) 

( 3 . 4 )  

(3.2) 

( 3 . 6 )  

In addition, Tr = ((j + 3 ) / j ) r  - ( 1 / j ) r  u - (2/j)r.L 
The external limit of the internal asymptotic expansion in the new variables is 

5 + j  I/2 2 
U = ( 3 - - ~ )  (Ms + 3 +j )1 /2  + . . . ,  N = Ms(M 2 + 3  +j) - l /2s-~2 + . . . ,  

(3.7) 

r0 = M2/(3+J)(Ms + 3 + j)-l/(a+i)s-(4/(a+J) + . . . .  

The structure of system (3.2)-(3.6) shows that its solution should be sought in the form F(sl ,  As) = F0(sl) + 
Asl2/(3j+ll)Fl(Sl) A- . . . .  As a zero approximation, we obtain 

5 + j  1/2 M 2 

(5  + J '~M-l(M2 N o =  s , s + 3 + j)3/2s-2; (3.9) 

dTo _ 4 rJ.0., (3.10) 
ds 3 + j  s 

l s2  dr[l~ = - [C(  Z)( ruo - To) - A( Z )( r_LO - ~'o)]~'oU6; (3.11) 
2 ds 

s 2d~'J-~ + 2sr.l_o = [m(Z)(ruo - to) - B(Z)(r_Lo -- ro)lro U6, 
ds (3.12) 

j + 3  1 2 
rT0 = r0 - - :rt l0  - - : r •  

J ) ) 
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Fig. 1. Dependences ~II(Z, 2) and Cr(Z, 2) on Z. 

Here we introduce a new variable: s = ((5 + j ) / ( 3  + j ) )W2Msl (M2 + 3  +j)s, .  As s --* 0, the solution of system 
(3.8)-(3.12) has the form 

7"r0 = rll0 = r• = r0 = Ks -4[(3+j). (3.13) 

"Sewing" with (3.7) gives the value of the constant 

"5 + j ,  2 / ( 3 + j )  j)3/(3+j). (3.14) K = (3--~) M~-2/(3+i)(M2s + 3 + 

Furthermore, it is easy to show that as s --* cr system (3.8)-(3.12) admits the following solution: 

rll0(S ) = 7-110(oo ) + 2r~/6(oo){rllo(Oo)C(Z) + [A(Z) - C(Z)]r0(oo)} 1, 
s 

T• = ~'~/6(oo){rllo(cx~)A(Z) .+ [B(Z) - A(Z) l ro (~ )}  1, 

+ ,4--~.T~/6(~){rlIo(~)A(Z)+ [B(Z)- A(Z)lr0(~)} z-. T0(s) v0(cx~) a-l-] s 

Hence 
1 

-rl/6(cx~){rilo(oo)[A(Z) - C(Z)] + r0(oo)[B(Z) + C(Z) - 2A(Z)]} -L, ~'rO ( S ) 7"rO ( OO ) + 3-- s 

where rll0(oo), r• and r0(oo) are found by numerical integration of system (3.10)-(3.12) with boundary 
conditions (3.13) and (3.14), and they depend on Z and Ms. 

Reverting to dimensional variables, we can write expressions for the limiting parallel and rotational 
temperatures of a polyatomic gas relating them with the source conditions: 

(T#)3(j+9)/(3J+ 11) 
(9"690"1027)-12/(3j+1])r ~12/(3j+11) 4/(3i+11)" Tr(ID~ 

~e0 D j C 6 

Here Cr(ll)(Z,j) = v~(iD0(Oo)[rs(1 + (1/(3 + j))M2)-(J+D/4] -12/(3j+1D is a function tha t  depends only on Z 
and j ,  because the real tempera ture  should not depend on the location of "sewing" r = rs; p0 ~ and T ~ in the 
nozzle are given in a tm and K, respectively, and D is given in cm. 

4. R e s u l t s  a n d  D i s c u s s i o n .  Particular calculations were performed for diatomic gases (j  = 2). In 
this case, expressions for the limiting parallel and rotational temperatures  have the form 

[rp0 ~33/17 
7~ir162 1.758 10-2~162 ~Z 2 ~ ~l~ (4.1) 

= " lit ')(pOD)12/17C4/17 ' 

(7"0~ 
Tr~ = 1.758 �9 10-2~ 2)(pOD)12/17c4/l 7 . (4.2) 
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Fig. 2. Dependence of Troo/T ~ on nOD: points �9 refers to the experiment of [12] T = 300 K, 
points o refers to the experiment of [12] T = 600 K, curve 1 refers to the theory of [12], curve 
2 refers to the calculation using formula (4.2) of the present paper for Z = 9; points t~ refer to 
the calculation of [7] for the data of [12]. 

Fig. 3. Dependence of TI1r162 on p~ points * refer to the experiment of [12], points o refer to the 
experiment of [16], the curve refers to the calculation using formula (4.1) of the present paper 
for Z = 9; points n refer to the calculation of [7] for the data of [12], and points �9 refer to the 
calculation of [71 for the data of [16]. 

Figure 1 shows the dependences of ~r(Z, 2) and ~II(Z, 2) on Z. It is evident that ~II(Z, 2) depends 
relatively weakly on Z, while (I)r(Z, 2) increases fairly rapidly with increase in Z. Note that, at large Z, 
the given dependences are well approximated by the expressions (I)r(Z,2) = 3.427Z 12/17 and (I)II(Z,2) = 

16.490Z -sDT. The character of the asymptotic expressions agrees with the estimates of [5]. In addition, note 
that, for Z = 2.12, we have ~r(Z, 2) = (I)II(Z, 2), i.e., the limiting parallel and rotational temperatures are 
equal under any source conditions. This behavior of the temperatures was noted in [5, 6]. 

Figure 2 gives a comparison of the calculated and experimental dependences of the limiting rotational 
temperature on nOD for N2 using the experimental results of Poulsen and Miller [12]. Curve 1 was calculated 
in [12] using the linear equation of relaxation of rotational energy and the assumption of isentropic behavior 
of the jet parameters. Good agreement with the experimental dependence for Zr = 3 was obtained in [12]. 
Note the significant difference between the definition of the parameter Zr in [12] and the definition of the 
parameter Z in the present paper. In [12], as in many other papers (see, for example, [7, 13-15]), Zr is 
given by the relation Zr = rr / r t  = rru, where v = v~n(v)~rcr 2 is the average frequency of elastic collisions 
for rigid spheres [9]. This relation does not take into account the real behavior of the frequency of elastic 
collisions (which is given by relation (1.8) for the potential V(r) = -C6/r 6) at low temperatures and leads to 
underestimated values of the experimental value of Z. The calculation by formula (4.2) gives curve 2, which 
describes satisfactorily the experimental data for Z = 9". 

Figure 3 compares the experimental and calculated dependences of TII ~ on pOD. The solid curve is the 
calculation by formula (4.1) for Z = 9 and C'6 = 1.256.10 -58 erg.cm 6 [17]. For comparison, Figs. 2 and 3 give 
the results of numerical solution of the system of momentum equations with the linear equation of relaxation 
of rotational energy (weak nonequilibrium for rotational degrees of freedom) [7] for the conditions of [12, 16]. 
As can be seen from the above comparison of the theoretical and experimental curves, the dependences of Tr 
on pOD can serve to determine the rotational number of collisions at low temperatures. Note, however, that, 
in this case, one should take into account the difference between the theory and experiment at small values of 
pOD, This difference is possibly caused by the nonequilibrium for both translational and rotational degrees of 
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freedom, which increases with decrease in pOD. The latter circumstance was noted, for example, in [18, 19]. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-03- 

33807). 
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